Macam - Macam Bilangan

A. Pengertian Bilangan
Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks. Bilangan adalah suatu ide yang bersifat abstrak yang akan memberikan keterangan mengenai banyaknya suatu kumpulan benda. Lambang bilangan biasa dinotasikan dalam bentuk tulisan sebagai angka. Prosedur-prosedur tertentu yang mengambil bilangan sebagai masukan dan menghasil bilangan lainnya sebagai keluran, disebut sebagai operasi numeris. Operasi uner mengambil satu masukan bilangan dan menghasilkan satu keluaran bilangan. Operasi yang lebih umumnya ditemukan adalah operasi biner, yang mengambil dua bilangan sebagai masukan dan menghasilkan satu bilangan sebagai keluaran. Contoh operasi biner adalah penjumlahan, pengurangan, perkalian, pembagian, perpangkatan, dan perakaran. Bidang matematika yang mengkaji operasi numeris disebut sebagai aritmetika.

B. Macam-Macam Bilangan


1. Bilangan Asli
Dalam matematika, terdapat dua kesepakatan mengenai himpunan bilangan asli. Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan bilangan bulat positif yang bukan nol {1, 2, 3, 4, ...}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan nol dan bilangan bulat positif {0, 1, 2, 3, ...}. Bilangan asli merupakan salah satu konsep matematika yg paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya.
Wajar apabila bilangan asli adalah jenis pertama dari bilangan yang digunakan untuk membilang, menghitung, dsb. Sifat yang lebih dalam tentang bilangan asli, termasuk kaitannya dengan bilangan prima, dipelajari dalam teori bilangan. Untuk matematika lanjut, bilangan asli dapat dipakai untuk mengurutkan dan mendefinisikan sifat hitungan suatu himpunan.
Setiap bilangan, misalnya bilangan 1, adalah konsep abstrak yg tak bisa tertangkap oleh indera manusia, tetapi bersifat universal. Salah satu cara memperkenalkan konsep himpunan semua bilangan asli sebagai sebuah struktur abstrak adalah melalui aksioma Peano (sebagai ilustrasi, lihat aritmetika Peano).
Konsep bilangan-bilangan yg lebih umum dan lebih luas memerlukan pembahasan lebih jauh, bahkan kadang-kadang memerlukan kedalaman logika untuk bisa memahami dan mendefinisikannya. Misalnya dalam teori matematika, himpunan semua bilangan rasional bisa dibangun secara bertahap, diawali dari himpunan bilangan-bilangan asli.
Asli/Sail adalah himpunan bilangan bulat positif yang bukan nol. Nama lain dari bilangan ini adalah bilangan hitung atau bilangan yang bernilai positif (integer positif).
Contoh:  1,2,3,4,5,6,7,8,….
2.Bilangan Prima 
Dalam matematika, bilangan prima adalah bilangan asli yang lebih besar dari 1, yang faktor pembaginya adalah 1 dan bilangan itu sendiri. 2 dan 3 adalah bilangan prima. 4 bukan bilangan prima karena 4 bisa dibagi 2. Sepuluh bilangan prima yang pertama adalah 2, 3, 5, 7, 11, 13, 17, 19, 23 dan 29.
Jika suatu bilangan yang lebih besar dari satu bukan bilangan prima, maka bilangan itu disebut bilangan komposit. Cara paling sederhana untuk menentukan bilangan prima yang lebih kecil dari bilangan tertentu adalah dengan menggunakan saringan Eratosthenes
Secara matematis, tidak ada "bilangan prima yang terbesar", karena jumlah bilangan prima adalah tak terhingga.[1] Bilangan prima terbesar yang diketahui per 2013 adalah 257,885,161 − 1.[2] Bilangan ini mempunyai 17,425,170 digit dan merupakan bilangan prima Mersenne yang ke-48. M57885161 (demikian notasi penulisan bilangan prima Mersenne ke-48) ditemukan oleh Curtis Cooper pada 25 Januari 2013 yang merupakan profesor-profesor dari University of Central Missouri bekerja sama dengan puluhan ribu anggota lainnya dari proyek GIMPS.
Jadi bilangan prima adalah bilangan-bilangan  sail/asli yang hanya bisa dibagi dirinya sendiri dan satu, atau bilangan yang memiliki 2 faktor, dan angka satu bukan bilangan prima.
Contoh: 2,3,5,7,11,13,17,….
3.Bilangan Cacah
Bilangan cacah adalah himpunan bilangan bulat yang tidak negatif, yaitu {0, 1, 2, 3 ...}. Dengan kata lain himpunan bilangan asli ditambah 0. Jadi, bilangan cacah harus bertanda positif. Bilangan cacah juga merupakan bilangan bulat positif digabung dengan nol.
Contoh: 0,1,2,3,4,5,6,7,….
4.Bilangan Bulat
1. Bilangan bulat terdiri dari bilangan bulat negatif, nol, dan bilangan bulat positif.
2. Sifat-sifat penjumlahan pada bilangan bulat:
a. Sifat tertutup
Untuk setiap bilangan bulat a dan b, berlaku a + b = c dengan c juga bilangan bulat.
b. Sifat komutatif
            Untuk setiap bilangan bulat a dan b, selalu berlaku a + b = b + a.
c. Sifat asosiatif
            Untuk setiap bilangan bulat a, b, dan c selalu berlaku (a + b) + c = a + (b + c).
d. Mempunyai unsur identitas
Untuk sebarang bilangan bulat a, selalu berlaku a + 0 = 0 + a. Bilangan nol (0) merupakan unsur identitas pada penjumlahan.
e. Mempunyai invers
Untuk setiap bilangan bulat a, selalu berlaku a + (–a) = (–a) + a = 0. Invers dari a adalah –a, sedangkan invers dari –a adalah a.
3. Jika a dan b bilangan bulat maka berlaku a b = a + (–b).
4. Operasi pengurangan pada bilangan bulat berlaku sifat tertutup.
5. Jika p dan q bilangan bulat maka
a. p x q = pq;
b. (–p) x q = –(p x q) = –pq;
c. p x (–q) = –(p x  q) = –pq;
d. (–p) x (–q) = p x  q = pq.
6. Untuk setiap p, q, dan r bilangan bulat berlaku sifat
a. tertutup terhadap operasi perkalian;
b. komutatif: p x q = q x p;
c. asosiatif: (p x q) x r = p x (q x  r);
d. distributif perkalian terhadap penjumlahan: p x (q + r) = (p x q) + (p x  r);
e. distributif perkalian terhadap pengurangan: p x (q r) = (p x q) – (p x  r).
7. Unsur identitas pada perkalian adalah 1, sehingga untuk setiap bilangan bulat p berlaku p x 1 = 1 x p = p.
8. Pembagian merupakan operasi kebalikan dari perkalian.
9. Pada operasi pembagian bilangan bulat tidak bersifat tertutup.
10. Apabila dalam suatu operasi hitung campuran bilangan bulat tidak terdapat tanda kurung, pengerjaannya berdasarkan sifat-sifat operasi hitung berikut.
a. Operasi penjumlahan (+) dan pengurangan (–) sama kuat, artinya operasi yang terletak di sebelah kiri dikerjakan terlebih dahulu.
b. Operasi perkalian ( x ) dan pembagian (:) sama kuat, artinya operasi yang terletak di sebelah kiri dikerjakan terlebih dahulu.
c. Operasi perkalian ( x ) dan pembagian (:) lebih kuat daripada operasi penjumlahan (+) dan pengurangan (–), artinya operasi perkalian ( x ) dan pembagian (:) dikerjakan terlebih dahulu daripada operasi penjumlahan (+) dan pengurangan (–).
Jadi bilangan bulat adalah bilangan yang terdiri dari seluruh bilangan baik negatif, nol dan positif.
Contoh: -3,-2,-1,0,1,2,3,….
5. Bilangan Rasional
Bilangan rasional adalah bilangan yang dapat dinyatakan sebagai  p/q dimana p,q ϵ bulat dan q ≠ 0 atau dapat dinyatakan sebagai suatu bilangan desimal secara berulang ulang.
Bilangan rasional juga merupakan bilangan yang dapat dinyatakan sebagai a/b dimana a, b bilangan bulat dan b tidak sama dengan 0. dimana batasan dari bilangan rasional adalah mulai dari selanga (-∞, ∞).
Bilangan bisa dikatakan dapat dibagi menjadi 2 sekup besar yaitu bilangan rasional dan bilangan irasional. Bila kita mengatakan bilangan rasional berarti di dalamnya sudah mencakup bilangan-bilangan lain seperti: bilangan bulat, bilangan asli, bilangan cacah, bilangan prima dan bilangan-bilangan lain yang menjadi subset dari bilangan rasional.
Contoh dari bilangan rasional:
Jika a/b = c/d maka, ad = bc.
Bilangan rasional juga merupakan bilangan-bilangan yang merupakan rasio (pembagian) dari dua angka (integer) atau dapat dinyatakan dengan a/b, dimana a merupakan himpunan bilangan bulat dan b merupakan himpunan bilangan bulat tetapi tidak sama dengan nol.
Contoh :
{½, ⅓, ⅔, ⅛, ⅜, ⅝, ⅞, ...}
Bilangan pecahan/ pecahan-pecahan termasuk sekumpulan bilangan rasional.
Pecahan desimal adalah pecahan-pecahan dengan bilangan penyebut 10, 100, dst. { 1/10, 1/100, 1/1000 }, semua bilangan ini dapat ditemukan dalam garis-garis bilangan.
Sebuah bilangan asli dapat dinyatakan dalam bentuk bilangan rasional. Sebagai contoh bilangan asli  2 dapat dinyatakan sebagai 12/6 atau 30/15 dan sebagainya.
Bilangan  Rasional  diberi lambang Q (berasal dari bahasa Inggris “quotient”).
Contoh: -2,2/7,5,2/11,….

6. Bilangan Irrasional
Dalam matematika, bilangan irasional adalah bilangan riil yang tidak bisa dibagi (hasil baginya tidak pernah berhenti). Dalam hal ini, bilangan irasional tidak bisa dinyatakan sebagai a/b, dengan a dan b sebagai bilangan bulat dan b tidak sama dengan nol. Jadi bilangan irasional bukan merupakan bilangan rasional. Contoh yang paling populer dari bilangan irasional ini adalah bilangan π,  \sqrt2 , dan bilangan e.
Bilangan π sebetulnya tidak tepat, yaitu kurang lebih 3.14, tetapi
= 3,1415926535.... atau
= 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510...
Untuk bilangan  \sqrt2 :
= 1,4142135623730950488016887242096.... atau
= 1,41421 35623 73095 04880 16887 24209 69807 85696 71875 37694 80731 76679 73798..
dan untuk bilangan e:
= 2,7182818....

Sejarah

http://bits.wikimedia.org/static-1.22wmf4/skins/common/images/magnify-clip.png
Bilangan \scriptstyle\sqrt{2}adalah bilangan irasional.
Menurut sejarah, penemu bilangan irasional adalah Hippasus dari Metapontum (ca. 500 SM). Sayangnya, penemuannya tersebut justru menyebabkan ia dihukum mati oleh Pythagoras karena dianggap penganut ajaran sesat.
Dalam doctorate in Absentia-nya di tahun 1799, A new proof of the theorem that every integral rational algebraic function of one variable can be resolved into real factors of the first or second degree, Gauss memberikan bukti teorema fundamental aljabar yang menyatakan bahwa setiap-tiap dari polinomial variabel tunggal bukan-konstanta dengan koefisien kompleks memiliki paling sedikit atau setidaknya satu akar kompleks. Namun banyak matematikawan termasuk Jean le Rond d'Alembert yang memberikan bukti yang salah pada awalnya,dan disertasi Gauss juga banyak mengkritik kerja d'Alembert.
Namun sekali lagi, ironisnya, dengan menggunakan standar sekarang percobaan milik Gauss tidak dapat diterima, yang menyebabkan penggunaan secara implisit teorema Kurva Jordan di dalam kurva fraktal. Bagaimanapun, dia secara berkelanjutan memberikan tiga bukti yang lain,yang terakhir pada 1849 yang dikenal sukar. Upayanya dalam mengklarifikasi konsep mengenai bilangan kompleks memang banyak dibicarakan (dari contoh bilangan irasional paling terkenal :\sqrt{-x} = i \sqrt x.,memecahnya dengan menempatkan minus pada satu tingkat dibawah sumbu imajiner dan x pada sumbu positif real,Gauss mengubah bilangan irasional yang sebelumnya dianggap bilangan antara ada dan tiada menjadi dapat diperhitungkan, lihat secara khusus polar kompleks).
Gauss juga memberikan kontribusi sangat penting bagi teori bilangan. Di dalam bukunya di tahun 1801, Disquisitiones Arithmeticae (bahasa Latin:, Investigasi Aritmetika), yang mana, dalam banyak hal, Gauss memperkenalkan penggunaan notasi ≡ untuk kekongruenan dan menggunakannya dalam presentasi yang baik di dalam aritmetika modular.

Abad ke-19 menyaksikan perkembangan cepat konsep bilangan imajiner di tangan Abraham de Moivre,dan secara khusus Leonhard Euler, yang menjadikannya lebih berdaya guna. Penyelesaian teori mengenai bilangan kompleks di abad ke-19 membedakan bilangan irasional menjadi bilangan aljabar dan transenden. Bukti keberadaan bilangan transenden, dan menjamurnya studi-studi saintifik mengenai teori bilangan irasional telah lama dipikirkan sejak Euclid. Tahun 1872 menyaksikan publikasi dari teori-teori dari Karl Weierstrass (oleh muridnya, Ernst Kossak), Eduard Heine (Crelle's Journal, 74), Georg Cantor (Annalen, 5), dan Richard Dedekind. Meray memulai pada 1869,sama dengan Heine, tetapi teorinya dikutip secara umum pada 1872.

Pecahan kontinyu, yang berhubungan dekat dengan bilangan irasional, mendapat perhatian di tangan Euler, dan akhirnya,fajar abad ke-19 benar-benar dibawa menuju keagungan lewat tulisan-tulisan Joseph Louis Lagrange. Dirichlet juga menambahkan dalam teori umumnya, seperti juga banyak sekali kontributor untuk penerapan mengenai subyek ini.
Bilangan irrasional juga merupakan bilangan real yang tidak bisa dibagi atau lebih tepatnya hasil baginya tidak pernah berhenti. Sehingga tidak bisa dinyatakan a/b.
Contoh :
π         =          3,141592653358…….. 
√2        =          1,4142135623……..
e          =          2,71828281284590…….
Contoh: log 2, e, √7, i

7. Bilangan Real
Bilangan real atau bilangan riil menyatakan bilangan yang dapat dituliskan dalam bentuk decimal, seperti 2,86547… atau 3.328184. Dalam notasi penulisan bahasa Indonesia, bilangan desimal adalah bilangan yang memiliki angka di belakang koma “,” sedangkan menurut notasi ilmiah, bilangan desimal adalah bilangan yang memiliki angka di belakang tanda titik “.”. Bilangan real meliputi bilangan rasional, seperti 42 dan −23/129, dan bilangan irrasional, seperti π dan √2, dan dapat direpresentasikan sebagai salah satu titik dalam garis bilangan.
Himpunan semua bilangan real dalam matematika dilambangkan dengan R (berasal dari kata “real”).
Contoh: log 10, 5/8, -3, 0, 3
8.Bilangan Imajiner
Bilangan imajiner adalah bilangan i (satuan imajiner) dimana i adalah lambing bilangan baru yang bersifat i2 = -1.
Bilangan imajiner merupakan bilangan yang mempunyai sifat i2 = −1. Bilangan ini merupakan bagian dari bilangan kompleks. Secara definisi, bilangan imajiner i ini diperoleh dari penyelesaian persamaan kuadratik : 
   x2 + 1 = 0
atau secara ekuivalen 
   x2 = -1
atau juga sering dituliskan sebagai
   x = √-1

Contoh: i, 4i, 5i
9.Bilangan Kompleks
Bilangan kompleks adalah
suatu bilangan yang merupakan penjumlahan antara bilangan real dan bilangan imajiner atau bilangan yang berbentuk a + bi.
Dimana a dan b adalah bilangan real, dan i adalah bilangan imajiner tertentu. Bilangan real a disebut juga bagian real dari bilangan kompleks, dan bilangan real b disebut bagian imajiner. Jika pada suatu bilangan kompleks, nilai b adalah 0, maka bilangan kompleks tersebut menjadi sama dengan bilangan real a.
Contoh :
{3 + 2i}
Jadi bilangan kompleks adalah bilangan yang anggota-anggotanya (a+bi) dimana a, b ϵ R, i2 = -1, dengan a bagian riil dan b bagian imajiner.
Contoh: 2-3i, 8+2
10. Bilangan Pecahan
Bilangan pecahan adalah bilangan yang disajikan/ ditampilkan dalam bentuk a/b; dimana a, b bilangan bulat dan b ≠ 0.
a disebut pembilang dan b disebut penyebut.
Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai p/q, dengan p dan q adalah bilangan bulat dan q ≠0. Bilangan p disebut pembilang dan bilangan q disebut penyebut. Pecahan dapat dikatakan senilai apabila pecahan tersebut mempuyai nilai atau bentuk paling sederhana sama

Contoh:
5/7; 5 dikatakan sebagai pembilang dan 7 dikatakan sebagai penyebut
10/45; 10 dikatakan sebagai pembilang dan 45 dikatakan sebagai penyebut


Berikut ini merupakan jenis-jenis pecahan:
1) Pecahan Biasa
Yaitu pecahan dengan pembilang dan penyebutnya merupakan bilangan bulat
Contoh:
1/4 , 2/5 , 9/10
2) Pecahan Murni
Yaitu pecahan yang pembilang dan penyebutnya merupakan bilangan bulat dan berlaku pembilang kurang atau lebih kecil dari penyebut. Pecahan murnai dapat dikatakan sebagai pecahan biasa tetapi pecahan biasa belum tentu dapat dikatakan sebagai pecahan murni
Contoh:
1/6 , 3/5, 7/15
3) Pecahan campuran
Pecahan yang terdiri atas bagian bilangan bulat dan bagian pecahan murni
Contoh:
3 ½, 4 ½, 5 ¾,
4) Pecahan desimal
Yaitu pecahan dengan penyebut 10, 100, 1000, dan seterusnya, dan ditulis dengan tanda koma,
Contoh:
0,4; 4,6; 9,2
5) Persen atau perseratus
 pecahan dengan penyebut 100 dan dilambangkan dengan %
Contoh:
4% artinya 4/100
35% artinya 35/100
6) Permil atau perseribu
Yaitu pecahan dengan penyebut 1.000 dan dilambangkan dengan%0
Contoh:
8%0 artinya 8/1000
125%0 artinya 125/1000
11. Bilangan Komposit
Bilangan komposit adalah bilangan asli lebih besar dari 1 yang bukan merupakan bilangan prima. Bilangan komposit dapat dinyatakan sebagai faktorisasi bilangan bulat, atau hasil perkalian dua bilangan prima atau lebih. Atau bisa juga disebut bilangan yang mempunyai faktor lebih dari dua.
Contoh :
{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, …}

Komentar